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Abstract. The electrical conductivity of an equilibrium system of particles interacting 
according to a surface adhesion potential was studied by means of Monte Carlo simulations. 
Results for the conductivity in the region of the percolation threshold are reported as a 
function of particle volume fraction and temperature. The conductivity exponent p was 
found to be 1.6* 0.2, in agreement with experimental measurements on microemulsions 
but significantly different from the reported lattice value o f  about 2.0. 

The electrical conductivity of a two-phase medium in which one phase is conducting 
and the other insulating is strongly dependent on the structure of the medium. If the 
conducting phase consists of particles dispersed in a continuous insulating phase, 
conduction only occurs above the percolation threshold for the dispersed phase. A 
possible example of such a system is a water-in-oil microemulsion (van Dijk 1985). 
In this case, the oil phase is almost entirely non-conducting and the small conductivity 
that is observed below the percolation point is primarily due to the migration of charged 
droplets. If the attractive forces between the droplets are sufficiently strong, the system 
will percolate at some droplet concentration and the conductivity will increase by 
several orders of magnitude (Cazabat er al 1980). The considerable influence exerted 
by the interparticle forces on the percolation threshold in equilibrium microemulsions 
has been illustrated experimentally by Cazabat, Langevin and co-workers (Cazabat er 
al 1980, 1982, 1984, Cazabat and Langevin 1981). Although several workers have 
reported simulation results for the conductivity of model systems in which conducting 
and insulating elements are constrained to lattice sites and for non-interacting con- 
tinuum models, it seems that no results have been reported for continuum models of 
interacting particles. Lattice models have enjoyed substantial success in the study of 
the critical behaviour in the vicinity of the percolation threshold, but they do  not 
necessarily capture the true fluid nature of equilibrium percolating systems. Notably, 
the value of the critical exponent for conduction, p, which is reported for three- 
dimensional lattice models is different from that measured experimentally in micro- 
emulsions. The conductivity, U, near the percolation threshold is found experimetally 
to be governed by the scaling law 

(+K (77  - 7 7 p Y .  (1) 
Here, 77 = m d 3 / 6  is the particle volume fraction, where p is the number density of 
particles and d is the particle diameter. Recent estimates of p for three-dimensional 
lattices are in the range 1.87-2.0 (Derrida er a1 1983, Pandey and Stauffer 1983, Sahimi 
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et al1983). Jerauld er a1 (1984) found the similar value of 2.02 for a Voronoi tessellation, 
a continuum model in which the nodes are randomly distributed in space. On the 
other hand, p has been measured as 1.55*O.l and 1.6*0.1 for electrical conductivity 
in two different microemulsions by Lagues (1979) and  as 1.68kO.05 by Bhattacharya 
er a1 (1985). These measured values are consistent with each other and  significantly 
less than the values obtained using lattice models or the Voronoi tessellation. 

In this paper we report a Monte Carlo investigation of the conductivity of an 
equilibrium dispersion of conducting particles in an insulating medium. The particles 
interact according to the adhesive-sphere potential, which is one of the simplest models 
to incorporate an attractive interaction, the limiting form of the square-well potential 
as the well becomes infinitely deep but only infinitesimally wide. The adhesive potential 
is given by 

= 1  r > d  ( 2 )  
where p = ( k T ) - ’ ,  k is Boltzmann’s constant and 8 is the Dirac delta. The attractive 
well has the nature of an  ‘adhesion’ on the surface of a spherical particle of diameter 
d. 7 is a dimensionless indicator of the temperature; T-’ represents the adhesiveness 
of the particles. Because the divergence of the Boltzmann factor occurs simultaneously 
with the vanishing of its width (or degeneracy), the probability that one particle finds 
itself in the potential well of another is finite. The Monte Carlo simulation method 
(Seaton and  Glandt 1986, 1987b) for adhesive spheres and the aggregation and  
percolation behaviour of the adhesive sphere fluid (Seaton and Glandt 1987a) have 
been presented in separate publications and  will not be discussed here. 

If the ratio of the dispersed (particulate) phase conductivity to that of the continuous 
phase, CY, is sufficiently large, all the current flows within the particulate phase and  
between pairs of particles which are very close together. Each particle can then be 
considered to be a node in a resistor network and the calculation of the conductivity 
of a configuration generated in the course of the simulation is reduced to the solution 
of Kirchhoff’s current law at each node (Kirkpatrick 1973) 

where g, is the conductance across the gap  between particles i and j ,  and V,  and V, 
are the potentials of particles i and j ,  respectively. The calculation of the effective 
conductivity now amounts to the solution of a system of linear algebraic equations. 

We have calculated the effective conductivity in a system of adhesive spheres in 
the limit as CY + 00. In this limit, conduction occurs only between particles at contact. 
Batchelor and  O’Brien (1977) have obtained analytical results for the resistance, R, 
between two spheres at or near contact and  shown that it is well defined in the above 
limit 

R = [ 2 r d a ,  ln(a’)]-’ (4) 
where is the conductivity of the continuous phase. Because in the model potential 
considered here interacting particles are in direct contact, the interparticle resistance 
is a constant for all touching pairs, and is zero for pairs which are not touching. In 
an  experimental system, on the other hand, neighbouring particles would adopt a range 
of separations causing the interparticle resistance to vary. As the interparticle potentials 
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in real systems are in general poorly known, it might in any case be difficult to produce 
by simulation a realistic distribution of interparticle resistances. 

The conductivity which is reported here is that of a very large cubic system composed 
of replicas of the small system which is being simulated. (This is equivalent to the 
application of periodic boundary conditions.) A potential gradient is notionally applied 
to the infinite system. A constant potential difference therefore exists between any 
particle in the small system and its image in an adjacent replica system which has a 
different coordinate in the direction of the applied gradient. As the set of Kirchhoff's 
law equations is solved only for the smaY system itself, this must be taken into account 
in the boundary conditions for the conduction problem. In the direction of the potential 
gradient, therefore, the appropriate boundary condition is that the potential of a particle 
at the edge of a neighbouring replica differs from that of the corresponding particle 
in the small system by &AV, while in the other Cartesian directions they are at the 
same potential as the corresponding particle in the small system. The boundary 
condition in the direction of the gradient differs from the one usually employed, i.e. 
the application of a potential difference directly across the small system without 
considering periodic boundary conditions in this direction. The boundary conditions 
used here should be expected to yield conductivities closer to those of true macroscopic 
systems. The Kirchhoff's law equations were solved only for configurations which had 
already been determined to be percolating in the direction of the applied gradient, as 
the conductivity of other configurations is zero. 

Most of the simulations were carried out with systems of 108 particles. Some 
simulations were carried out with systems of 32 particles to determine the effect of 
system size on the measured conductivity. The difference in conductivity between the 
two systems was slight, being within the experimental uncertainty except for densities 
very close to the percolation threshold, v p ,  when the absolute difference was neverthe- 
less small. For this reason, the 108-particle system was considered to accurately 
represent the macroscopic system, except very close to the percolation threshold. Some 
256-particle runs were carried out at the percolation threshold. Because the structure 
of the percolating cluster changed rather slowly, the conductivity was calculated only 
every 1 0 N  Monte Carlo steps, where N is the number of particles in the system. The 
number of configurations examined was between 1000 and 6750 for N = 108 and 
between 1100 and 1760 for N = 256. 

Figure 1 shows the reduced conductivity of suspensions of adhesive spheres at two 
temperatures, T = 0.10 and T = 0.13, as the density varies. The percolation thresholds, 
which were determined independently of the conductivity calculations (Seaton 1986), 
are vp = 0.123 * 0.003 at T = 0.1, and vP = 0.154* 0.003 at T = 0.13. The appropriate 
reduced conductivity is uRd, where R is the interparticle resistance, as before. Although 
the dependence of the conductivity on the thermodynamic state is complex, being 
strictly an N-particle cooperative property, it must be an increasing function of the 
average coordination number. Considering that the coordination number increases 
with increasing density and decreasing temperature, this effect is indeed evident in 
figure 1. Because it does not represent the behaviour of a macroscopic system, the 
conductivity below the percolation threshold is not shown in figure 1, although because 
of the finite-size effect it is actually measured to be non-zero below v p .  

Clearly, the onset of percolation and the increase in conductivity above the percola- 
tion threshold are the results of the same microscopic phenomenon, i.e. increasing 
connectedness. I t  makes sense, therefore, to ask to what extent the conductivity is 
correlated with the percolation threshold. Figure 2 shows the data of figure 1 but with 
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Figure 2. Reduced conductivity plotted against (1) - vP) for T = 0.1 [squares) and T = 0.13 
(circles). 

the curves shifted so that the abscissa is 7 - 7p,  rather than 7. To within the statistical 
uncertainty, the data collapse to a single curve. The error bars in 7 are due to the 
estimated uncertainty in 7p, given above; for any T ,  the error must of course be in the 
same sense for all data points. This suggests that, to a good approximation, the reduced 
conductivity may depend only on the difference between the particle volume fraction 
and the percolation threshold. 

In this work, finite-size scaling was employed to calculate p from the adhesive- 
sphere simulation data. The finite-size scaling equation is (Mitescu et al 1982) 

(+cc L-fi’” ( 5 )  

where L is the size of the system and v is the universal correlation length exponent 
(0.88 in three dimensions). p was obtained from a plot of In U against In L for systems 
of 32, 108 and 256 particles for ~ = 0 . l  (figure 3) and 0.13. Despite the rather small 
size of the smallest system, the scaling plots were quite linear. 
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Figure 3. Finite-size scaling plot for 7 = 0.1 

Taking into account the experimental uncertainty, p was determined to be between 
0.75 and 1.78 for the .r=O.l data, and between 1.45 and 1.80 for the .r=O.13 data. 
Assuming that the scaling law holds for systems of this size, the best estimate of the 
conduction exponent is p = 1.6 * 0.2. These simulations were carried out on systems 
considerably smaller than are often used with lattice models, the reason being that 
continuum Monte Carlo simulations with interacting particles are considerably more 
time consuming. This is especially true in the case of adhesive particles, because of 
the difficulty in generating configurations where the particles are attached to one 
another (Seaton and Glandt 1986, 1987b). A simulation near the percolation threshold 
for a system of N = 256 particles required about 3 h of CPU time on a Cray XMP. The 
simulation of larger systems was therefore deemed impractical. There would thus be 
the possibility of a systematic error in the estimation of p if the systems we have 
studied were not in the scaling region, although the linearity of the scaling plots and 
the corresponding plots for the percolation threshold suggest that finite-size scaling 
holds well for systems of these sizes. Because of the limited availability of computer 
time, finite-size scaling was applied only at the best estimate of T~ for each 7; the error 
in vp was not taken into account and the estimated error in p is due only to the error 
in the conductivity calculations. The value of p obtained from the simulations is 
significantly different from the values measured using lattice models and is in good 
agreement with the values measured experimentally in microemulsions (1.5)-( 1.7). 
Several workers (Kogut and Straley 1979, Ben-Mizrahi and Bergman 1981, Halperin 
et a1 1985, Sen et a1 1985) have shown for non-interacting systems that, if the values 
of the resistances vary from resistor to resistor (being chosen at random from a 
probability distribution), the exponent governing the conductivity may be greater than 
the exponent found for lattice-based models in which the resistances are all the same. 
Because it appears that p is always increased by the introduction of a distribution of 
resistances, this effect cannot account for the difference between the experimental 
microemulsion value and the generally accepted lattice value, 

In appears that this is the first time that the non-lattice value has been observed 
in a model system where the interparticle resistance is fixed. Our result supports the 
evidence of measurements on microemulsions that equilibrium continuum systems are 
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in a different universality class from lattice systems, from the point of view of their 
transport properties. 
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